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Received: 30 November 2004 /
Published online: 25 February 2005 – c© Società Italiana di Fisica / Springer-Verlag 2005
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Abstract. We calculate parity-nonconserving observables in the processes where a neutron is captured on
a proton at the threshold energy radiating a photon. Various potential models such as Paris, Bonn and
Argonne v18 are used for the strong interactions, and the meson exchange description is employed for
the weak interactions between hadrons. The photon polarization Pγ in the unpolarized-neutron capture
process and photon asymmetry Aγ in the polarized-neutron capture process are obtained in terms of the
weak meson-nucleon coupling constants. Aγ turns out to be basically insensitive to the employed strong
interaction models and thus can be uniquely determined in terms of the weak coupling constants, but Pγ

depends significantly on the strong interaction models.

PACS. 24.80.+y Nuclear tests of fundamental interactions and symmetries – 14.20.Dh Protons and neu-
trons

1 Introduction

Recent experiments to explore the weak interactions be-
tween hadrons through parity-nonconserving (PNC) ob-
servables in nuclear systems [1,2] or reactions [3,4] have
triggered revived interest in this field. These PNC ob-
servables can be related to the meson-nucleon weak cou-
pling constants which are introduced in the meson ex-
change potential description of the hadronic weak interac-
tion [5]. However, due to various uncertainties (see refs. [5,
6] for details), the weak coupling constants were fixed only
within certain ranges [5]. Thus, it has been hoped that
the PNC observables from various experiments can reduce
the range of these coupling constants and eventually de-
termine the values. The situation, however, has not been
much improved even by the recent measurements. For ex-
ample, the value of the π-N weak coupling constant, h1

π,
from the anapole moment of 133Cs [1] is inconsistent with
a previous value obtained from the forbidden γ-decay of
18F [7]: h1

π determined by the former is larger than that
from the latter by a factor of 7. New experiments, already
completed [3], being done [4] or expected to be performed,
concern two-nucleon systems in which many-body effects
are absent. Thus, they are expected to give more strin-
gent constraints on the weak coupling constants. For the
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current status of research on the weak coupling constants,
see [8].

In this work, we calculate the photon asymmetry Aγ in
the radiative capture of a polarized neutron on a proton,
~n + p → d + γ, and the circular polarization of photons
Pγ in n + p → d + γ at the threshold. The latest exper-
imental value of Aγ is −(1.5 ± 4.8) × 10−8 [9], but the
experiment being done at LANSCE aims at the accuracy
of 10−9 [4]. Theoretical calculations of Aγ using strong
models made in the 1960s and the 1970s such as Hamada-
Johnston, Reid soft core and Tourreil-Sprung, show results
similar to each other; Aγ ' −0.11h1

π [10]. Aγ is predomi-
nantly determined by h1

π and depends very little on other
coupling constants (as will be shown in table 1). In this
work we present Aγ calculated with potentials such as
Paris [11], Bonn [12], Bonn-A and Bonn-B [13], and Ar-
gonne v18 (Av18) [14]. We compare our results with previ-
ous ones [10] and investigate the model dependence of Aγ .

Contrary to Aγ , Pγ at the threshold is known to be
sensitive to the heavy-meson (ρ and ω) components of
the weak potentials [10,15]. The most recent experimen-
tal value of Pγ is (1.8 ± 1.8) × 10−7 [16], and theoretical
calculations made in the 1970s agree with this value within
the experimental errors. However, since Pγ is sensitive to
the short-range properties of the strong interactions as
well as of the weak interactions, its model dependence is
more noticeable than Aγ [15,17]. Since the inverse process,
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~γ + d → n + p, whose PNC asymmetry at the threshold
is equal to Pγ , becomes experimentally feasible nowadays,
we expect that Pγ can be measured more precisely and
can provide more constraints on the weak dynamics of
hadrons. We thus investigate the model dependence of Pγ
with the same potentials that we use in calculating Aγ .

In sect. 2, we present the Desplanques-Donaghue-
Holstein (DDH) potential [5] and the parity-admixed wave
functions in the initial and the final states. In sect. 3, the
electromagnetic operators are presented, matrix elements
are derived, and the results for Aγ and Pγ are shown.
Discussions on the results follow in sect. 4.

2 Parity-admixed wave function

The Schrödinger equation for a two-nucleon system can
be written as

H Ψ(r) =

[

− 1

mN

(

1

r

∂2

∂ r2
r − l(l + 1)

r2

)

+VC(r) + VT (r)S12(r̂) + Vpnc(r)

]

Ψ(r) =

E Ψ(r), (1)

where VT represents the tensor potential and VC in-
cludes central, spin-orbit, spin-spin and quadratic spin-
orbit interactions in the strong potential. In the Paris
and Bonn potentials, it is essential to include the
momentum-dependent term in the central potential to
obtain the correct phase shifts even at low energies.
In ref. [18] a transformation useful for treating the
momentum-dependent term is suggested. In this work,
however, we have dealt with the momentum-dependent
terms without using such a transformation and have
solved the Schrödinger equation as it is. We have con-
firmed that the solutions thus obtained reproduce the re-
sults of each potential model [11–13] fairly well with differ-
ences less than 1%. The small differences can be attributed
to the use of slightly different values of physical quantities
in the calculations. Vpnc is the PNC potential, and we use
the one given by DDH [5]

Vpnc(r) = V π
pnc(r) + V ρ

pnc(r) + V ω
pnc(r),

V π
pnc(r) = i

gπNNh
1
π

2
√
2mN

(τ1 × τ2)
z
(σ1 + σ2) · [p, fπ(r)] , (2)

V ρ
pnc(r) = −

gρNN

mN

[(

h0
ρ τ1 · τ2 +

1

2
h1
ρ (τ

z
1 + τz2 )

+
h2
ρ

2
√
6
(3τz1 τ

z
2 − τ1 · τ2)

)

(

(σ1−σ2) · {p, fρ(r)}

+i(1 + χρ) (σ1 × σ2) · [p, fρ(r)]
)

+i
h1′

ρ

2
(τ1 × τ2)

z
(σ1 + σ2) · [p, fρ(r)]

−
h1
ρ

2
(τz1 − τz2 )(σ1 + σ2) · {p, fρ(r)}

]

, (3)

V ω
pnc(r) = −

gωNN

mN

[(

h0
ω +

1

2
h1
ω (τz1 + τz2 )

)

×
(

(σ1 − σ2) · {p, fω(r)}+ i(1 + χω)

×(σ1 × σ2) · [p, fω(r)]
)

+
h1
ω

2
(τz1 − τz2 )

×(σ1 + σ2) · {p, fω(r)}
]

, (4)

where the strong coupling constants are gπNN = 13.45,
gρNN = 2.79, gωNN = 8.37 and the anomalous magnetic
moments are χρ = 3.71 and χω = −0.12. The Yukawa
functions fM (r) are defined as

fM (r) =
e−mMr

4πr
, (M = π, ρ, ω).

The quantities h∆I
M represent the weak meson-nucleon cou-

pling constants, where ∆I denotes the isospin transfer.

At the threshold energy, the initial scattering state,
n + p, is dominated by the lowest angular-momentum
state, i.e., the 1S0 channel, and higher angular-momentum
states are suppressed. Thus, in this work we just include
the next low-lying state, the 3S1-

3D1 partial waves, where
the 3D1 state is induced by the tensor interaction in the
initial scattering state. Then, the parity-even state of the
initial wave function consists of the 1S0,

3S1 and 3D1

states.

Since Vpnc is a parity-odd operator, it creates opposite-
parity components in the wave function. For example,
when Vpnc is operated on the 1S0 state, the isoscalar and

isotensor terms of Vpnc generate a 3P̃0 admixture, where
the tilde denotes the parity-admixed components gener-
ated from the DDH potential. Similarly, 3P̃1 and 1P̃1 ad-
mixtures arise from applying the isovector and isoscalar
components of Vpnc to the

3S1-
3D1 state, respectively. The

total wave function of the initial state with its parity ad-
mixture at the threshold can be written as

Ψi(r) = Ψpc
i (r) + Ψpnc

i (r),

Ψpc
i (r) =

1√
4πr

[

us(r)χ00 ζ10

+

(

ut(r) +
S12(r̂)√

8
wt(r)

)

χ1Sz
ζ00

]

, (5)

Ψpnc
i (r) = − i√

4πr

[

√

3

8
ṽ3p1
t (r)(σ1 + σ2)χ1Sz

ζ10

+
1

2
ṽ3p0
t (r)(σ1 − σ2)χ00 ζ10

]

· r̂, (6)

where χS Sz
and ζT Tz

represent the spin and isospin part,
respectively. us is the radial part of the wave function for
the 1S0 channel, ut for

3S1 and wt for
3D1. The final-state



C.H. Hyun et al.: Parity-nonconserving observables in thermal neutron capture on a proton 131

Table 1. Results for the observables Aγ and Pγ for various phenomenological models in terms of the weak coupling constants
h
∆I
M . Best values mean Aγ and Pγ values obtained with the best values of h

∆I
M suggested by DDH. They are in units of 10−8.

The definitions of P
i,f
γ and A

i,f
γ are given in eqs. (17) and (16), respectively.

Best values (×10−8)

Model Aγ Aγ A
i
γ A

f
γ

Paris −0.148h1

π − 0.001h1

ρ + 0.003h1

ω −6.85 −3.34 −3.51
Bonn −0.117h1

π − 0.001h1

ρ + 0.003h1

ω −5.42 −2.66 −2.76
Bonn-B −0.117h1

π − 0.001h1

ρ + 0.002h1

ω −5.41 −2.65 −2.76
Av18 −0.117h1

π − 0.001h1

ρ + 0.002h1

ω −5.41 −2.63 −2.78
Best values (×10−8)

Model Pγ Pγ P
i
γ P

f
γ

Paris −0.0106h0

ρ + 0.0074h0

ω − 0.0191h2

ρ 2.88 −1.24 4.12

Bonn −0.0890h0

ρ + 0.0088h0

ω − 0.0214h2

ρ 12.01 −1.40 13.4

Bonn-B −0.0286h0

ρ + 0.0012h0

ω − 0.0208h2

ρ 5.21 −1.35 6.56

Av18 −0.0088h0

ρ + 0.0034h0

ω − 0.0175h2

ρ 2.64 −1.11 3.75

wave function can be written in a similar way as

Ψf (r) = Ψpc
f (r) + Ψpnc

f (r),

Ψpc
f (r) =

1√
4πr

(

ud(r) +
S12(r̂)√

8
wd(r)

)

χ1Sz
ζ00, (7)

Ψpnc
f (r) =

i√
4πr

[
√
3

2
ṽ1p1
d (r)(σ1 − σ2)χ1Sz

ζ00

−
√

3

8
ṽ3p1
d (r)(σ1 + σ2)χ1Sz

ζ10

]

· r̂, (8)

where ud(r) (wd(r)) is the radial wave function for the
3S1 (3D1) deuteron state, and ṽ1p1

d and ṽ3p1
d denote the

parity-nonconserving admixture due to the 1P̃1 and 3P̃1

states, respectively. By inserting the initial and the final
wave functions into the Schrödinger equation (1) with the
strong and weak PNC potentials, one can obtain the radial
wave equation for each channel (see appendix for details).

3 Matrix elements, Pγ and Aγ

At the threshold energy, it is well known that the neu-
tron capture cross-section is dominated by the isovector
M1 transition. We can evaluate the parity-conserving M1
transition amplitude by using the one-body spin current
operator

JM = −i µV
4mN

∑

i

τzi σi × kγ , (9)

where µV = 4.71, and kγ is the photon momentum. Am-
plitudes between the states with opposite parities would
become nonzero through the E1 transition. While the im-
pulse approximation is used in evaluating the M1 ampli-
tude, the contribution from the exchange currents can be
well accounted for by the Siegert’s theorem. The E1 cur-
rent operator with Siegert’s theorem reads

JS
E = −i ω

4
(τz1 − τz2 )r, (10)

where ω is the photon energy (2.2246 MeV at threshold).

The transition amplitudes (Mf
i ) can be classified in terms

of the electromagnetic type M(= M or E), the initial
(i) and the final (f) states. The leading parity-conserving
isovectorM1 transition occurs between the initial 1S0 and
final 3S1 states, and we denote its amplitude byM 3s1

1s0 . The
nonzero PNC E1 amplitudes are represented similarly as
Ẽ3s1

3p0 for 3P̃0 → 3S1 +
3D1, Ẽ

1p1
1s0 for 1S0 → 1P̃1, Ẽ

3s1
3p1 for

3P̃1 → 3S1 +
3D1, and Ẽ3p1

3s1 for 3S1 +
3D1 → 3P̃1, where

the tildes are to distinguish the PNC amplitudes from the
normal parity-conserving ones. With the wave functions
of eqs. (5)-(8), we obtain the matrix elements

M3s1
1s0 =

ω µV
4mN

∫

dr ud(r)us(r), (11)

Ẽ3s1
3p0 =

ω

12

∫

dr r
(

ud(r)−
√
2wd(r)

)

ṽ3p0
t (r), (12)

Ẽ1p1
1s0 =

ω

4
√
3

∫

dr r ṽ1p1
d (r)us(r), (13)

Ẽ3s1
3p1 = − ω

4
√
6

∫

dr r

(

ud(r) +
wd(r)√

2

)

ṽ3p1
t , (14)

Ẽ3p1
3s1 =

ω

4
√
6

∫

dr r ṽ3p1
d

(

ut(r) +
wt(r)√

2

)

. (15)

In terms of these electromagnetic amplitudes, the two
PNC observables are written as

Aγ = −2
Ẽ3s1

3p1 + Ẽ3p1
3s1

M3s1
1s0

≡ Ai
γ +Af

γ , (16)

Pγ = −2
Ẽ3s1

3p0 + Ẽ1p1
1s0

M3s1
1s0

≡ P i
γ + P f

γ , (17)

where Ai
γ ≡ −2Ẽ3s1

3p1/M
3s1
1s0 and P i

γ ≡ −2Ẽ3s1
3p0/M

3s1
1s0

have the PNC component in the initial state and
Af
γ ≡ −2Ẽ3p1

3s1/M
3s1
1s0 and P f

γ ≡ −2Ẽ1p1
1s0/M

3s1
1s0 have the
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Fig. 1. The wave functions us(r), ud(r) and wd(r) calculated
with different potentials are plotted. The results for us(r) from
Bonn, Bonn-B and Av18 are indistinguishable and correspond
to the upper curve in the figure. ut(r) and wt(r) are not shown
here, because they do not depend very much on the models.

PNC component in the final state. Numerical results are
given in table 1. We express the results for Aγ and Pγ in
terms of the weak coupling constants h∆I

M to show explic-
itly the dependence of Aγ and Pγ on each meson. “Best
values” refer to Aγ and Pγ values evaluated with the so-
called best values of the weak meson coupling constants
suggested by ref. [5]. They are h0

ρ = −11.4, h0
ω = −1.9,

h2
ρ = −9.5, h1

π = 4.6, h1
ρ = −0.2 and h1

ω = −1.1, in units

of 10−7.
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Fig. 2. Wave functions for the parity-admixed states for dif-
ferent potentials. The wave functions are given in units of h

1

π.
Note the difference in the scale.

4 Results and discussions

Asymmetry (Aγ)
As shown in table 1, the Bonn and Av18 models pre-

dict the same Aγ value, while the best value from the
Paris potential is larger in magnitude than those from
Bonn and Av18 by a factor of 1.27. This factor can be un-
derstood by examining the wave functions that contribute
to Aγ . us and ud are plotted in fig. 1, and ṽ3p1

d in fig. 2.

As can be seen in figs. 1 and 2, ud and ṽ3p1
d calculated

with different potentials are very similar to each other for
all potentials, but us calculated with the Paris potential
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√
2wd(r)) ṽ

3p0
t (r) of

eq. (12), and the lower one I2(r) ≡ r ṽ
1p1
d (r)us(r) of eq. (13).

is substantially different from us from other potentials.
(ṽ3p1

t , though not shown here, is more or less the same
for all potential models.) The reason for this difference
can be traced back to the fact that the Paris potential
was fitted to proton-proton data and therefore yields a
scattering length a = −17.6 fm for the 1S0 channel (in
the absence of the Coulomb interaction), while Av18 and
Bonn are neutron-proton models and yield a = −23.7 fm.
The M1 isovector amplitude M 3s1

1s0 in the denominator of
eqs. (16) and (17) is 0.184 for the Paris potential and
0.233 for the Av18 and Bonn potentials. Since the wave
functions that contribute to the E1 amplitude in eqs. (14)
and (15) (numerator of Aγ) are very similar, the differ-
ence in the values of Aγ comes mostly from the value
of the M1 amplitude in the denominator of Aγ . Indeed,
the ratio of the M1 amplitudes for Av18 to Paris, 1.27,
is equal to the ratio of the best value of Aγ . Thus, if one
could readjust the Paris potential to produce the accepted
n-p scattering length in the 1S0 channel, the four models
would give us essentially model-independent Aγ values.
A recent work [19] in which various contributions from
the exchange currents are taken into account confirms
this model-independent nature of Aγ . The magnitude of
Aγ in ref. [19] (Aγ = −4.98 × 10−8) with pion exchange
currents is smaller than ours (Aγ = −5.41 × 10−8) by
about 9%, and is in agreement with the result of ref. [20]
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Fig. 4. Comparison of the central potentials in the 1
P1 channel

of the Bonn, Bonn-B, and Av18 potentials.

(Aγ = −4.94×10−8), where one-body and leading pion ex-
change currents are considered. On the other hand, if one
employs the h1

π value from the 18F [7] (a similar value of h1
π

is obtained from the chiral soliton model [21]) and 133Cs [1]
experiments, Aγ becomes −1.52×10−8 and −11.1×10−8,
respectively. Since the contribution from the pion to Aγ

is more than 99% of the total value (see table 1), a more
accurate measurement of Aγ can provide a stringent de-
termination of h1

π.

In passing, we remark that Aγ from a previous
work [22] using the Paris potential differs from our Aγ

in sign though the magnitudes agree. It appears that the
definitions of Aγ differ in sign.

Polarization (Pγ)

While Aγ is dominated by the long-range part of the
interactions and is practically model independent, Pγ de-
pends strongly on the heavy-meson exchanges and on the
potential model. Pγ ’s calculated with the best values of
the weak coupling constants [5] and Paris and Av18 po-
tentials are similar to each other, but Pγ ’s evaluated with
Bonn and Bonn-B are larger than that with Av18 by a fac-
tor of 5 and 2, respectively. (Bonn-A and Bonn produce
similar results and thus Bonn-A is not included in the dis-
cussion.) Pγ ’s expressed in terms of h∆I

M in table 1 show
that Pγ from Bonn is more sensitive to h0

ρ than Pγ from

other potentials, while the terms depending on h0
ω and

h2
ρ are only moderately model dependent. The contribu-

tions from the initial (3P̃0) and the final (1P̃1) states listed
in table 1 show that the initial-state contribution (P i

γ) is
rather model independent, but the contribution from the
final state (P f

γ ) is highly dependent on the potentials.

The numerical factors in front of the weak coupling
constants in table 1 are determined by the strong poten-
tials in each channel through the wave functions of the
1S0 and 3S1-

3D1 channels that enter into the source terms
in the Schrödinger equation of the parity-admixed states
(see appendix). The wave functions for the 3P̃0 and the
1P̃1 states are shown in fig. 2, and the corresponding inte-
grands of the E1 amplitudes, eqs. (12) and (13), are shown

in fig. 3. The wave function (ṽ3p0
t (r)) and the integrand
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(I1(r)) for the 3P̃0 state exhibit a sizeable model depen-

dence. However, for the 1P̃1 channel there are even more
drastic variations in both wave function (ṽ1p1

d (r)) and the
integrand (I2(r)) depending on different potentials. Such a
strong model dependence can be understood from the be-
havior of the strong potential in the 1P1 channel and the
source term that contributes to ṽ1p1

d in the Schrödinger
equation (see eq. (A.6)). Figure 4 shows the strong po-
tentials in the 1P1 channel. The Bonn potential for the
1P1 channel becomes attractive in the short-range region,
while Av18 is repulsive in the whole region. The attraction
at short ranges increases the probability for a nucleon to
be present in the region, and this can partly explain the
shape of ṽ1p1

d in fig. 2. A recent work by R. Schiavilla et

al. shows a similar behavior of ṽ1p1
d [19].

In fig. 5, we compare the source terms of the 3P̃1 (the

right-hand side of eq. (A.5)) and 1P̃1 (the right-hand side

of eq. (A.6)) states. The sources for the 3P̃1 state from
different models show a moderate model dependence for
r ≤ 0.5 fm, but they have significant magnitudes and
are indistinguishable in the intermediate- and long-range
regions, which explains the model-independent results of
Aγ in table 1. On the contrary, most of the contribution

to the source terms of ṽ1p1
d comes from the intermediate-

and short-range region, and they depend strongly on the

model. A larger source combined with attraction in the
short-range region, as is the case for the 1P̃1 channel of
the Bonn models, yields an enhanced contribution to Pγ .

Concluding, we have calculated parity-nonconserving
observables Pγ for the reaction n+ p→ d+ γ and Aγ for
the reaction ~n+p→ d+γ at threshold. We have employed
the Paris, Bonn and Av18 potentials for the strong inter-
action and the DDH potential for the weak interaction. Aγ

turns out to be independent of the strong interaction mod-
els, while Pγ is sensitive to the dynamics at short ranges.
Since Aγ is rather strong interaction independent, one can
reduce the uncertainty in the value of h1

π by measuring Aγ

accurately. Regarding Pγ , there are relatively large uncer-
tainties, which stem from ambiguities in both strong and
weak interactions at short ranges. However, since the ma-
jor uncertainty comes from the 1P̃1 channel and the value
of h0

ρ, an accurate experimental measurement of Pγ can
shed some light on the weak coupling constants.

We thank B. Desplanques for useful discussions. The work is
supported by the Korea Research Foundation Grant (KRF-
2003-070-C00015).

Appendix A.

The radial equations for the 1S0 continuum, and the 3S1-
3D1 continuum and bound states read

u′′s (r) +mN (E − VC(r)) us(r) = 0, (A.1)

u′′t(d)(r) +mN (E − VC(r))ut(d)(r) =

√
8mNVT (r)wt(d)(r), (A.2)

w′′t(d)(r)−
6

r2
wt(d)(r)−mN (E − VC(r)

+2VT (r))wt(d)(r) =
√
8mNVT (r)ut(d)(r). (A.3)

The equations for the parity-admixed states are

ṽ3p0′′

t (r)− 2

r2
ṽ3p0
t +mN (E − VC(r) + 4VT (r)) ṽ

3p0
t =

−2
[

(χρ + 2)us(r)
∂

∂r

(

F 0
ρ (r)−

√

2

3
F 2
ρ (r)

)

+(χω + 2)us(r)
∂

∂r
F 0
ω(r)

+2r

(

F 0
ρ (r)−

√

2

3
F 2
ρ (r) + F 0

ω(r)

)

∂

∂r

(

us(r)

r

)

]

,

(A.4)
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ṽ3p1′′

t(d) (r)− 2

r2
ṽ3p1
t(d)(r) +mN (E − VC(r)

−2VT (r)) ṽ3p1
t(d)(r) =

2√
3

[(

ut(d)(r) +
1√
2
wt(d)(r)

)

× ∂

∂r

(

F 1
π (r) +

√
2F 1

ρ (r)−
√
2F 1

ω(r)−
√
2F 1′

ρ (r)
)

+2
√
2
(

F 1
ρ (r)−F 1

ω(r)
) ∂

∂r

(

ut(d)(r) +
1√
2
wt(d)(r)

)

−2
√
2

r

(

F 1
ρ (r)− F 1

ω(r)
)

(

ut(d)(r)−
√
2wt(d)(r)

)

]

,

(A.5)

ṽ1p1′′

d (r)− 2

r2
ṽ1p1
d +mN (E − VC(r)) ṽ

1p1
d =

2√
3

[

(

ud(r)−
√
2wd(r)

) ∂

∂r

(

3χρF
0
ρ (r)− χωF

0
ω(r)

)

−2
(

3F 0
ρ (r)− F 0

ω(r)
) ∂

∂r

(

ud(r)−
√
2wd(r)

)

+
2

r

(

3F 0
ρ (r)− F 0

ω(r)
)

(

ud(r) + 2
√
2wd(r)

)

]

, (A.6)

where F∆I
M (r) ≡ gMNN h∆I

M fM (r).
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